= read_chronicle_metrics("./data", "2023/04/03")
z assert type(z) == pl.DataFrame
assert z.columns == [
'service',
'host',
'os',
'attributes',
'name',
'description',
'unit',
'type',
'timestamp',
'value_float',
'value_int',
'value_uint',
'value_column'
]
read
Read and query chronicle parquet files.
Using the read interface
read_chronicle_logs
read_chronicle_logs (path:str, date:str='', version:str='v1')
Read a chronicle logs parquet file into a polars dataframe.
Type | Default | Details | |
---|---|---|---|
path | str | Path to dataset, | |
date | str | date in format YYYY/MM/DD |
|
version | str | v1 | currently must be v1 |
Returns | DataFrame |
read_chronicle_metrics
read_chronicle_metrics (path:str, date:str='', version:str='v1')
Read a chronicle metrics parquet file into a polars dataframe.
Type | Default | Details | |
---|---|---|---|
path | str | Path to dataset, | |
date | str | date in format YYYY/MM/DD |
|
version | str | v1 | currently must be v1 |
Returns | DataFrame |
= read_chronicle_logs("./data", "2023/04/03")
z assert type(z) == pl.dataframe.frame.DataFrame
assert z.columns == [
'service',
'host',
'os',
'attributes',
'body',
'timestamp'
]