Based on Equation 7E of Sprott.

attractor_sprott_7e(a, n, x0 = 1, y0 = 1, dims = c(600, 600),
  progress = (n >= 1e+05), n_discretize = 1e+06, qs = 0.05,
  discretize = TRUE)

Arguments

a

Numeric vector of length 14

n

Number of points to generate

x0

Initial value for x

y0

Initial value for y

dims

Dimensions of resulting matrix

progress

If TRUE, displays a progress bar

n_discretize

Number of values to generate before computing the range

qs

quantile cutoff

discretize

If TRUE discretizes to a matrix with dimensions dims else a data frame

Value

if discretize == TRUE a matrix with dimensions dims, else a data frame with columns x and y, and n rows.

Details

$$x_{i+1} = a_{1} + a_{2} * x_{i} + a_{3} * y_{i} + a_{4} * |x_{i}|^{a5} + a6 * |y_{i}|^{a7}$$

$$y_{i+1} = a_{8} + a_{9} * x_{i} + a_{10} * y_{i} + a_{11} * |x_{i}|^{a12} + a13 * |y_{i}|^{a14}$$

References

Julien C. Sprott, "Strange Attractors: Creating Patterns in Chaos", page 418, Equation 7e, http://sprott.physics.wisc.edu/fractals/booktext/sabook.pdf